Compare commits

..

No commits in common. "d422c9b84e5d27bf70502d96b1cd98e9684e5e59" and "da25b73eca0dd36482610cd770bd6b7ffd363fd3" have entirely different histories.

4 changed files with 0 additions and 722 deletions

123
17/Cargo.lock generated
View File

@ -1,123 +0,0 @@
# This file is automatically @generated by Cargo.
# It is not intended for manual editing.
version = 3
[[package]]
name = "cfg-if"
version = "1.0.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "baf1de4339761588bc0619e3cbc0120ee582ebb74b53b4efbf79117bd2da40fd"
[[package]]
name = "day17"
version = "0.1.0"
dependencies = [
"petgraph",
"test-case",
]
[[package]]
name = "equivalent"
version = "1.0.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5443807d6dff69373d433ab9ef5378ad8df50ca6298caf15de6e52e24aaf54d5"
[[package]]
name = "fixedbitset"
version = "0.4.2"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "0ce7134b9999ecaf8bcd65542e436736ef32ddca1b3e06094cb6ec5755203b80"
[[package]]
name = "hashbrown"
version = "0.14.3"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "290f1a1d9242c78d09ce40a5e87e7554ee637af1351968159f4952f028f75604"
[[package]]
name = "indexmap"
version = "2.1.0"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "d530e1a18b1cb4c484e6e34556a0d948706958449fca0cab753d649f2bce3d1f"
dependencies = [
"equivalent",
"hashbrown",
]
[[package]]
name = "petgraph"
version = "0.6.4"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "e1d3afd2628e69da2be385eb6f2fd57c8ac7977ceeff6dc166ff1657b0e386a9"
dependencies = [
"fixedbitset",
"indexmap",
]
[[package]]
name = "proc-macro2"
version = "1.0.70"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "39278fbbf5fb4f646ce651690877f89d1c5811a3d4acb27700c1cb3cdb78fd3b"
dependencies = [
"unicode-ident",
]
[[package]]
name = "quote"
version = "1.0.33"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5267fca4496028628a95160fc423a33e8b2e6af8a5302579e322e4b520293cae"
dependencies = [
"proc-macro2",
]
[[package]]
name = "syn"
version = "2.0.41"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "44c8b28c477cc3bf0e7966561e3460130e1255f7a1cf71931075f1c5e7a7e269"
dependencies = [
"proc-macro2",
"quote",
"unicode-ident",
]
[[package]]
name = "test-case"
version = "3.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "eb2550dd13afcd286853192af8601920d959b14c401fcece38071d53bf0768a8"
dependencies = [
"test-case-macros",
]
[[package]]
name = "test-case-core"
version = "3.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "adcb7fd841cd518e279be3d5a3eb0636409487998a4aff22f3de87b81e88384f"
dependencies = [
"cfg-if",
"proc-macro2",
"quote",
"syn",
]
[[package]]
name = "test-case-macros"
version = "3.3.1"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "5c89e72a01ed4c579669add59014b9a524d609c0c88c6a585ce37485879f6ffb"
dependencies = [
"proc-macro2",
"quote",
"syn",
"test-case-core",
]
[[package]]
name = "unicode-ident"
version = "1.0.12"
source = "registry+https://github.com/rust-lang/crates.io-index"
checksum = "3354b9ac3fae1ff6755cb6db53683adb661634f67557942dea4facebec0fee4b"

View File

@ -1,10 +0,0 @@
[package]
name = "day17"
version = "0.1.0"
edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
petgraph = "0.6.4"
test-case = "3.3.1"

141
17/input
View File

@ -1,141 +0,0 @@
325324343122414426341311521355436756516735365767735336243266456152424263655442375437323425146317632655141433156665635625563452536534233413111
445243425411645566112351545244163515223165477656331552463117221625365717275545124476464451442531715677337534443363223313661263112221651414352
434514252414363452511152554236546325615346321237216231776737145123246363247221568835776177657563335176174462444145653231645541641352324222432
512344115556454364551122335531173547353527264165771324616431564154352161434333624143426673724271674725735171453732677454152514121553642514342
245335631545534511262451241637156561454332212544137121477616833536676467486356424113643275743254655271257165273233333713436363316152215525412
525134431665424254245311755242225774344146256415414763387571367658688754454216857288228327638844315166557547372743531744154253555366125322251
242226151434514231642522163777343413375375427786665751532313584425311152314384883312415875143615383175544722257361643371324456124635121426143
355256351224414362134546117516475527772757412718633456138147647447166316435131753115166364762163147767575652646664125323524233344211152621644
423662265151444333172175576611421743625662125375255611436332835555433412245516663422413367584728254346217161613476513362411124354554141656661
343132241425514222366532375754443311661867761827448367742356551447788222565282822336472646562481274186323321263463733172737523415231263231452
414512633246125157451572561554537454722163673577424576376853177774626628186236767857316633668123264385753152773455553614673334436441316224135
212324565521155353412567475573615133714344617411175657288438127655616781713123465347422118615674666483872652757672245614227473525561435343566
445221414451625675624645665212427183844173224183625244868437762281745333878761243125126616283437123288348253513642236266513777143336423452244
363544111542646272625122735154448186467255668146344132826437421272718576129612166754885626667262876277185872166576146412755315427431235361345
264656533336664366256136422751241622361444458382586165836578937121934658199719386351541531343455316352721641517715741643374346623641245141642
112445611653647577632776715757651127562631764334214565265123726662877597342896255454454353581576436364858847152147334456111671241736213243235
555625554155515642753141133472357442522378575788761684343125889676496481416737941365773489236312262742358647378637816625524652376464221145552
166212536136161764262663264151715412324265162172461388359546247927137713732357391885873753572632213528125746133582543132557354616253656161125
262214154431312345513141264637587481623632438762129328373598884879612652692926671574635499263972534168721832253467846424556241116716116355662
135241432555162671524462538183836241418472746146531476679922477637662841812239647283188595978522895688251211412744783771567244452546153345245
532216637311743517223634115741886133752415248862823922293142226987777614157674447415432957111246289861372245785828235814464543732552357524115
146561263436471442615526287283328418146343943213682363991837281378678451857923183343659739289952517643483666668454477612872264623531527114156
553563547345231122325535834576322628262281752991871677465471578556275546387834293362893217319352873468631622524488454757543336657573343346231
266564156547622167463643435425825221285933354618914693416371827482999473949778132544823891982233412759525148822255432468651261727135416714414
241435326144677632666655834466775762193454726392523657676252731186895484227244331982511164875543224648614243615642216164551727621224255321645
165625766274415126221387567754684125769562911449418567328954999269442383397657742111976735747616543945193885678317732613823354147551434172254
663471266547665567383385744766857544125555773727948178721595766362768764763389283465275425521861727174339179777676482636283377221474131172664
552267351614751263715528842613544492131357823275224224529882976386327823433479377684379863655876688634865837667534467375571818473234352527123
417167733326125612732158464675728774915115736789599864674655267296528289764653496935556672211933382185491674889326327638863358225141641776661
553433447763465113852224382474727588458713673836733584749236658844822472658497492547688383864951836467139432662174767657312876885715517172566
667541167336254488524837342876671664656562954852183656576233333873254363945623456596769545333862526193411672878826354158866344875721272113745
742742423566122778386568143632291815363624774439785729782249926489483479225989595798258826325346485866553327934443377824316727757316672416437
422416173617118884742181153285466515613425316646999647735464985688784946488843572663439527248557925282489796183853745584334188218713316517611
763175754752411761475574463499814429498138728567958989277844494897966247687976299566598923968224276327562217938234278212488752542237314351724
556357515132757111313386163174758761223833727635896636363788757464722947589395479356794346762935869851131172237499953267126584137242266563332
553452514551382115465845459551888517462873873925388334689354634986788558835365333394575696667743754281865874432573149225448868716422314153151
727477115766217727216544583899411845473274393224259527268426677665382498542244536749359523368784334883684284657479479623145838735713142311641
623775723417856274672723115245954791372868276248326532785676923354468396436867556933672689642689493334426665994793891938554866266411441635464
357655727381528486471438934682246867878728953726863365263395378599979499989445494543554685888797994457246284425146494523847682845162841467676
713225442368616642825874251457728254726498336436857496884894665436838647759737379449974974472942976778385826682519218241645473616645531255227
143115132751882814645234335693993315693492273544964459798578395446856796646994466763377345499557552788438771441525234336612412423834346523211
563124357115326738651179813293721543858493473499475888785648678877598767685393985868373765343793387586922432532313835672612126152631344576713
161643744871583517778716716592732854695358997554424874653584484749995659355969399657538739855335364842584499341554829664297243422443742217627
314417571311644786676857812476382568772944752389723949877773676947654886977363564564656448787568736238564893432112877333626254348575386766736
776344328255614461719768964778491246343236536693785358783954458767465334474845788383458739454343787762929647765239152374349167566558438427423
352364825562284245598758827867146952949744839636858679487354649333897878699343577583358936494456794644762845245583132395957674685442674213657
165116474648463674164854916648534936489844557493948573494559834384533436539877799979968846353597267726398358327688234857762963775536887664434
636244476616574846647739459365589464485573472239755849649363338696465548697637638734975433686777966529489995479371427436795444712248542244242
637735864354122638598582193357329687493754334369459855467953667653894978798833698638878588356346875628939527283866627761726597671516685427174
234265787355773655768346666121735692698653744885738497856483393689674898649577997399958433373787955768454347876736595261379656126328146286411
112767655742256845212962577375777649885299555457767374476434484654767654957948859747787796354688878783666798563553685971677619173751653125632
571453132563374754428433649129699672752544276898858748974354969458677564456979779546475974859365475874946272453658976328163915151248617627547
142583162475317422481573625624997475387877377975334869858698855546579585985975987879498939886539444982256287887973954241619679433725388527327
533247585173848868728351547857844568874594368494696993398568756785849787865568456854549687887848656666299259336837539132384839771741428127655
615468573841357563119491171796494694742954878467956458799956898567956945658585548466878737443834395395589454855236733372996957432151473455417
712281822873644374327211127428577898932274866883739393844879649754568787996648688464479984398399388463589596822886624259697865457588148666664
136562416585765349961939548589267679836968874647535938986445975695988894954468499449998546743964657957566429465497651995126318134132576252611
664553248645533826876894472974728737829658753737385958889458749467497446995476987665554788833743998485535738446299878511223783418241123523523
216673485271213882299775989884276937282689933697933446545787966965866999969865545756445677989389673844562259846887466538876636858727352514172
561327416424626319323885947575483566432886775386986678477789875855676946594954878464446759874339786347647885563257274772479849452341218853328
543414611273635871798538959594987265275776698754487659699789747885978996899658685697449894894533384458736853354975392764758672388138231227341
432177431672385492997519159785924344863965869338385868446897566987758776679699779999948444794449339687467966733362773574493894412663521343826
347125512661263615493994284268932764773443456439595658497689867498656657588955796748798799774383987946863496648669435744485628519485388635745
234414266212352323439914355995663935835737889578994846678946665969895859876758767589746666587937363599875397364293757755772863517557747336667
165677453767745981471984424575369862567689838893465684578767899768788798796576788458996788867998737468547692998985973389685897556471872623552
116786112155152692399989767286933237247737645595776648974959499775699595868698769845975468987579485487885883286826659428468372838324282111512
377586871572362673428351636972532524637489943754658469776969888985756695665668759579764745956864346579749772568358833311888124717127726527183
318164852453224592729434559244754674699557743559876747474974585695598957859985857696997477665456486667857796243525567741256626585522827113358
256655568346617621446653354665386832434445968933784544487764789798668576865577679764775445666453683457777446985583583616592962898181266224478
722447327541895771712452547924633958699394955868486968595868665886977559577966765766677478787645777643444882329378355275571729256528663733353
681245847143816872485464897478336665868833439643778745577556798997858795969859958658867557947956848853484479399665572351893714995112671712542
311381662366127117979691628467662497783389559654568448976988776969785977759865769596989799759496863598934465593797484374132873555158552238226
457474782125292676291123633778348492667699397478487495797899579777688999595566576657978586657959548666375867799586695984632767442686385738552
446616157875894869538721247895884644444883958939694686857454797576766596769678977878866756444843564374954453689422974856237432393117533128483
328513874786178732292652989455568257546978333547685649556859556989785958697896996969558664777693669444863357795442386542131312425674116545188
747847212285726534863559799474986827436555837479976774676546886866957568785596798586957654994685373975436492788443972514832361138572512654161
655775232613722364914271538968599287798576387849966696886855689868858988569956769648644589884777963696793654854647956227921717275975785623654
133381381437798727198762329677547326989373878353369696599978596599769677757779877555897759958668785498543442888697699371483636586223726547367
166558274267818548162234882895355743538677453683879454994868498865956757789887798484954454444478588833833824986689655715894154174185774415242
744372761363824188479933164279993635485947644456865846757657575569785868879855879598958794566895394956885434499837577347367422731518858612887
542154878866234222341249936289547276863933653697495455886575579875575878577655884578868949868795478447448539675945826676344156515447648384546
727648137147279312991745915569869748967897863693484548957585769676995776768899556467797877594595457565597942644325989896333716781667423243534
736513883717638924144115229662225798979374855467873564897654895888778776656646759488994944578647478549466472243343448517571862675853473616864
472573641838727179484843174326596238323797674954847658846499779979687897698786957488978957887393589648535875663387463691985638774236788623553
124821288351532635578793553795832779774448696673767567977447858477887878676469566499588899639674834547757355447365486454925564374273415537754
473366376825217384388358298858346676865647498858449537467576484448696554994844568658866985448999588568865694253572422898257449323363556414355
756585744556785281389581638793733695364655945467738676966784699696586944796568967556964687873563733383939393423897564823324453861637182853267
565377885838215871729589251946467492483786596678474736965759584646969695859846694554478644897956448493988952388686515531438553966563718473673
441237555152315781715534724764569644764966484434597935577849549996797944445598866585975464985538857347348739935777224728123383154322783665212
251538277583635525788213179949236983839585564657438535396857976586555596886987597784677479797768335698476345286595542471641181174621263365826
462645455814621845373415692662396785686584794946537846843758755467475597488876849747653439958865548869549767695386323199852847441248375338541
463546443547812219518172999856822775645249657899384888764384466588464496998699844799448386644993497387873285579539449217398533624347675543541
627134585837711668423259691198344552573775794347737374846947567564477798747547569756586957548779437697554747233864289854679427672835612465345
453427178468376465724244651434249467592372777377954886698995943799758965795489579878489647936487995475548384882447855836557219515272555272172
646164887363484557947971139665942397924584239956839476743645386597748689975975793667755335566355545754464596682873886675359686766371416867421
242564673372458178195363168781494567985469634643657747396363336558884388469558778894739837494797653627595967524589231722865526482421344174765
527234341744655648884683415323364239475568742248669646473336993435343838488698565959659888897554832493926543963268996957491745744384373681642
551517286282283171869299626636836973839926825529596737846853348847465543768893358499548363898668447899594793834437575675969522241126258282432
615113281186772747348241311277589768978579523525454785944673364478779885777788637938457768565594782776753548337442956913497758522663855544746
642722552558282717243186261369979747472328286247489597466575759788373865579784983835765597583957266269348476872977744141394534221775432834361
123255132786848881171289778858576544965558689395978795886845857873584539756667349675894535384688837649796799842596341266977334763116825677354
135221265824413236323157332895552381288822335555367339575879847894968958335438953379578775739548683874737377552721612721268151575627367374516
531372144561436544581261647461429475295794262997752694655885563973854977878549545376756598298288663367593432222189358593241862862567851525633
626241253623585223276449612369373315149376774267977495966454874953877799753954666837937985625362576929726958529984811986441465531615443642317
122237265686782174111763222458711389313762597662727299449372464353975654883644949566273662646296682598256439817316833461554838162575673712517
723263336441628827211586677967134954541492446275676949475759793974657373976875788542576364482493264736749878125328845632357141826286877316536
746376624247554234116778248423662686389547589753843874724295634799738747329256738622227935656823782646258367494222758652264524554281143475725
247227652554571866348233254561957766785945979683577957537487658236743744853762365675828364963779438767411174735912626572384742318221667753414
461752271733674688288542747127735521232319836579345595948435736687542357563568686627638662657552627936242586561889286338386747748155235227226
141456214273548658577623736731491554843413163948364432765456955986253284949329344329743583497259864561513822597516642174356653353313422722126
577514122213115543664523815812933592181557923163353748687669465747247978699468957873884592954895372236525435898266267231166186788652617642555
733555724377412472456818878267576986747564915594433739398666323228924448924829375982299639364766271435835929364781825316741447833326252417676
125222215152346652574685537442585295255477117856958664574265466997244968429967625364878556825897669923262572691766582725557644262753327717362
467157357433453135876225656776561727957327836923637932444972557496674222793666868922685325945691218298588167748387555736343614515634266527674
661776217564727341161434734284475862238735522767927168825678229454593732375258543947793974965685418316392331831342662517514464432121762671112
322226175666414714887813726538477315884488153872775481665957678523393653399286989356544792237258381256625891911364264883241763171167313676775
535433463745172562637474314438863546768596275157472615456823332796577429439255648883176346627241779499894798781815684141341115432556456643611
114516531415276157226232376712646274882692898428926131576766198472672582965649659239179984932272293221585428551187274518216722651334142336632
442465354622731723346571118328123567571116964772317433275893126613648877241944321925876477183764936251413286113213668326238173555355732216511
464545125331445744558616761437753623789891666294688255519735998824794952561825912628843557695114221545433384531731727161876473665573223373362
212622623666153674544543171825717224778543394854587565145835173211764734896255693756825741544633558375382657436484353324273475751235436535462
426456174161671373114214337372228811531433159234863841562359873663253579618768533225871676475124418634651463174367571421653316524135337216611
113264262762756157661221337642236412865163476628461551865256687522447798169631776999765762811667378264167441455366366874635763265145354445246
426635433223761674317156651435514314141128668545421467652684475967588596316618624557527821975129731666663738726663526335152162713322637353345
462625221553613622135255778417362232144315611424115765534629998153728136584747684638152634448139174522524258188274866446444754542614324644434
636534326173461144145272421245357854354484176813154881324324289844919955923398583536826126465974374482435317112341641177362167413653631136334
416121433661766275322466215778242625365252727337453283172471359263773988811988214463424763681262168421538852447148623325417465263633614152511
124165661313426677723346621157741741434378575443131887844322537341118644829916279535424761288166365435817422811564415651251116735711112164331
662213565461615664773261415161352365348334351167211364117737811331482474651845215456825315271337675186362621741624741731455143163362536213464
353163654655614552631221351147137158834856172472651447352645383627716833776783781867423336224623844544643183687212315514251544774456463166616
362441211445555544364416561477266288188517416482572255534821166861673587523181878873186281844855832334752187362742345667727277112563315642334
431663234654426537411563411631545147111423513725427621386471155234676712466243246352318626253227328241736815415232666553761366744242426616315
226531133633364435742641727266657131716261514281311262288684766444656242277146665425754546527885447432126232726412333341234543363451443141151
132441514114413263365254644654352543741828713741248814178464374241323848417341456825584538518825768881832262324114555671261641363331666134362
214126421452663325372554676727131463574734212374262156347777366377688162741748146151838743887681761444327446474521671324576334665511114122421
351531625361155425124432552645227655625173237845122258431184132246265282346434414371684686452682717564246721521767254276776656342611514416424
524134632564656514234312513351122255327641524888853223216877477886352121843137683831631511821167821614336237522461471235761565432361122352514
345434525245243335351164562536536325371562644423648433177446878843262728235726362818655267541335336453673667665743636625434415221611313542325
352232633361461221226332237671657471766723622375425212675228865561486835238657116512354337544131231554276255267433543145221253624656265664213
533341362332521262331624612755675274227615131761716775227664373273765866252331525736334615365731142562664711644136322541112142123112632614445
335424225554551224465145365617415232333565263422662657463575357742412565884351458348627343152461236262431544374247365213446446134632223333414

View File

@ -1,448 +0,0 @@
use std::collections::hash_map::RandomState;
use std::collections::{BinaryHeap, HashMap};
use std::fmt::{Display, Write};
use std::fs::File;
use std::io::{BufRead, BufReader, Lines};
use std::iter::repeat;
use std::time::Instant;
use petgraph::algo::dijkstra;
use petgraph::prelude::*;
// BOILERPLATE
type InputIter = Lines<BufReader<File>>;
fn get_input() -> InputIter {
let f = File::open("input").unwrap();
let br = BufReader::new(f);
br.lines()
}
fn main() {
let start = Instant::now();
let ans1 = problem1(get_input());
let duration = start.elapsed();
println!("Problem 1 solution: {} [{}s]", ans1, duration.as_secs_f64());
let start = Instant::now();
let ans2 = problem2(get_input());
let duration = start.elapsed();
println!("Problem 2 solution: {} [{}s]", ans2, duration.as_secs_f64());
}
// PARSE
#[derive(Clone, Copy, PartialEq, Eq, Debug, Hash)]
enum Direction {
Left,
Right,
Up,
Down,
}
impl Direction {
const fn all() -> &'static [Self; 4] {
&[
Direction::Left,
Direction::Right,
Direction::Up,
Direction::Down,
]
}
const fn opposite(&self) -> Self {
match self {
Direction::Left => Direction::Right,
Direction::Right => Direction::Left,
Direction::Up => Direction::Down,
Direction::Down => Direction::Up,
}
}
}
struct CityMap {
map: Vec<Vec<u64>>,
}
impl CityMap {
fn offset_pos(&self, pos: (usize, usize), dir: &Direction) -> Option<(usize, usize)> {
match dir {
Direction::Left if pos.0 > 0 => Some((pos.0 - 1, pos.1)),
Direction::Right if pos.0 < self.map[0].len() - 1 => Some((pos.0 + 1, pos.1)),
Direction::Up if pos.1 > 0 => Some((pos.0, pos.1 - 1)),
Direction::Down if pos.1 < self.map.len() - 1 => Some((pos.0, pos.1 + 1)),
_ => None,
}
}
}
type Position = (usize, usize);
struct WalkCost<'a> {
start: Position,
cost_from: Vec<Vec<HashMap<(Direction, usize), u64>>>,
dir_to: HashMap<Position, Direction>,
map: &'a CityMap,
}
#[derive(Debug)]
struct Move {
new_pos: Position,
dir: &'static Direction,
consecutive: usize,
weight: u64,
}
impl PartialEq for Move {
fn eq(&self, other: &Self) -> bool {
self.weight == other.weight
}
}
impl Eq for Move {}
impl PartialOrd for Move {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
impl Ord for Move {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
std::cmp::Reverse(self.weight).cmp(&std::cmp::Reverse(other.weight))
}
}
impl<'a> WalkCost<'a> {
fn from_map(map: &'a CityMap, start: Position) -> Self {
Self {
map,
start,
cost_from: map
.map
.iter()
.map(|row| repeat(HashMap::new()).take(row.len()).collect())
.collect(),
dir_to: HashMap::new(),
}
}
fn compute(&mut self) {
let mut unvisited_next_moves: BinaryHeap<Move> = BinaryHeap::new();
let valid_start_moves: Vec<Move> = Direction::all()
.iter()
.filter_map(|dir| {
self.map.offset_pos(self.start, dir).and_then(|pos| {
Some(Move {
new_pos: pos,
dir,
consecutive: 1,
weight: self.map.map[pos.1][pos.0],
})
})
}) // valid positions
.collect();
for m in valid_start_moves {
unvisited_next_moves.push(m);
}
while let Some(cur_move) = unvisited_next_moves.pop() {
// we've been here already at a lower cost
// if cur_move.weight >= self.cost_to[cur_move.new_pos.1][cur_move.new_pos.0] {
// continue;
// }
if let Some(last_weight) = self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]
.get(&(*cur_move.dir, cur_move.consecutive))
{
if cur_move.weight < *last_weight {
self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]
.insert((*cur_move.dir, cur_move.consecutive), cur_move.weight);
} else {
continue;
} // visited before at lower cost }
} else {
self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]
.insert((*cur_move.dir, cur_move.consecutive), cur_move.weight);
}
// println!("state at {:?}: {:?}", cur_move, self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]);
let valid_moves = Direction::all().iter().filter_map(|dir| {
self.map
.offset_pos(cur_move.new_pos, dir)
.and_then(|new_pos| {
Some(Move {
new_pos,
dir,
consecutive: if cur_move.dir == dir {
cur_move.consecutive + 1
} else {
1
},
weight: cur_move.weight + self.map.map[new_pos.1][new_pos.0],
})
})
.filter(|m| m.consecutive != 4 && *m.dir != cur_move.dir.opposite())
.filter(|m| {
m.weight
< *self.cost_from[m.new_pos.1][m.new_pos.0]
.get(&(*m.dir, m.consecutive))
.unwrap_or(&u64::MAX)
})
}); // valid positions
// println!("valid moves with {:?}", cur_move);
for next_move in valid_moves {
// println!(" {:?}", next_move);
unvisited_next_moves.push(next_move);
}
}
}
fn shortest_path_to(&self, to: Position) -> Vec<(Position, Direction)> {
let mut path = Vec::new();
let mut cur_pos = to;
// start at the end, walk backwards
while cur_pos != self.start {
let dir = self.dir_to.get(&cur_pos).unwrap();
path.push((cur_pos, *dir));
cur_pos = self.map.offset_pos(cur_pos, &dir.opposite()).unwrap();
}
path
}
fn print_shortest_path(&self, to: Position) {
let path = self.shortest_path_to(to);
let map: HashMap<_, _, RandomState> = HashMap::from_iter(path.into_iter());
// for y in 0..self.cost_to.len() {
// for x in 0..self.map.map[y].len() {
// if let Some(to_dir) = map.get(&(x, y)) {
// let c = match to_dir {
// Direction::Left => '<',
// Direction::Right => '>',
// Direction::Up => '^',
// Direction::Down => 'v',
// };
// print!("{}", c);
// } else {
// print!("{}", self.map.map[y][x]);
// }
// }
// println!();
// }
}
}
struct WalkCost2<'a> {
start: Position,
cost_from: Vec<Vec<HashMap<(Direction, usize), u64>>>,
map: &'a CityMap,
}
impl<'a> WalkCost2<'a> {
fn from_map(map: &'a CityMap, start: Position) -> Self {
Self {
map,
start,
cost_from: map
.map
.iter()
.map(|row| repeat(HashMap::new()).take(row.len()).collect())
.collect(),
}
}
fn compute(&mut self, to: Position) {
println!("computing to: {:?}", to);
let mut unvisited_next_moves: BinaryHeap<Move> = BinaryHeap::new();
let valid_start_moves: Vec<Move> = Direction::all()
.iter()
.filter_map(|dir| {
self.map.offset_pos(self.start, dir).and_then(|pos| {
Some(Move {
new_pos: pos,
dir,
consecutive: 1,
weight: self.map.map[pos.1][pos.0],
})
})
}) // valid positions
.collect();
for m in valid_start_moves {
unvisited_next_moves.push(m);
}
while let Some(cur_move) = unvisited_next_moves.pop() {
// we've been here already at a lower cost
// if cur_move.weight >= self.cost_to[cur_move.new_pos.1][cur_move.new_pos.0] {
// continue;
// }
if let Some(last_weight) = self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]
.get(&(*cur_move.dir, cur_move.consecutive))
{
if cur_move.weight < *last_weight {
self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]
.insert((*cur_move.dir, cur_move.consecutive), cur_move.weight);
// println!("move {:?} inserted {:?}", cur_move, (*cur_move.dir, cur_move.consecutive));
} else {
continue;
} // visited before at lower cost }
} else {
// println!("move {:?} inserted {:?}", cur_move, (*cur_move.dir, cur_move.consecutive));
self.cost_from[cur_move.new_pos.1][cur_move.new_pos.0]
.insert((*cur_move.dir, cur_move.consecutive), cur_move.weight);
}
if cur_move.new_pos == to {
// println!("reached end pos {:?} via {:?}", to, cur_move);
continue;
}
let valid_moves = Direction::all().iter().filter_map(|dir| {
self.map
.offset_pos(cur_move.new_pos, dir)
.and_then(|new_pos| {
Some(Move {
new_pos,
dir,
consecutive: if cur_move.dir == dir {
cur_move.consecutive + 1
} else {
1
},
weight: cur_move.weight + self.map.map[new_pos.1][new_pos.0],
})
})
.filter(|m| *m.dir != cur_move.dir.opposite())
.filter(|m| {
if m.dir == cur_move.dir {
m.consecutive < 11
} else {
cur_move.consecutive >= 4
}
})
.filter(|m| m.new_pos != to || m.consecutive >= 4)
.filter(|m| {
m.weight
< *self.cost_from[m.new_pos.1][m.new_pos.0]
.get(&(*m.dir, m.consecutive))
.unwrap_or(&u64::MAX)
})
}); // valid positions
// println!("valid moves with {:?}", cur_move);
for next_move in valid_moves {
// println!(" {:?}", next_move);
unvisited_next_moves.push(next_move);
}
}
}
fn shortest_path_to(&self, to: Position) -> Vec<(Position, Direction)> {
let mut path = Vec::new();
let mut cur_pos = to;
// start at the end, walk backwards
while cur_pos != self.start {
let (m, val) = self.cost_from[cur_pos.1][cur_pos.0].iter().min_by(|a, b| a.1.cmp(b.1)).unwrap();
path.push((cur_pos, m.0));
cur_pos = self.map.offset_pos(cur_pos, &m.0.opposite()).unwrap();
}
path
}
fn print_shortest_path(&self, to: Position) {
let path = self.shortest_path_to(to);
let map: HashMap<_, _, RandomState> = HashMap::from_iter(path.into_iter());
for y in 0..self.cost_from.len() {
for x in 0..self.map.map[y].len() {
if let Some(to_dir) = map.get(&(x, y)) {
let c = match to_dir {
Direction::Left => '<',
Direction::Right => '>',
Direction::Up => '^',
Direction::Down => 'v',
};
print!("{}", c);
} else {
print!("{}", self.map.map[y][x]);
}
}
println!();
}
}
}
impl<T: BufRead> From<Lines<T>> for CityMap {
fn from(lines: Lines<T>) -> Self {
Self {
map: lines
.map(|l| l.unwrap().chars().map(|c| c as u64 - '0' as u64).collect())
.collect(),
}
}
}
// PROBLEM 1 solution
fn problem1<T: BufRead>(input: Lines<T>) -> u64 {
let map = CityMap::from(input);
let mut costs = WalkCost::from_map(&map, (0, 0));
costs.compute();
// println!("{}", costs);
// costs.print_shortest_path((costs.cost_to[0].len() - 1, costs.cost_to.len() - 1));
*costs.cost_from[costs.cost_from.len() - 1][costs.cost_from[0].len() - 1]
.values()
.min()
.unwrap()
}
// PROBLEM 2 solution
fn problem2<T: BufRead>(input: Lines<T>) -> u64 {
let map = CityMap::from(input);
let mut costs = WalkCost2::from_map(&map, (0, 0));
costs.compute((map.map[0].len() - 1, map.map.len() - 1));
// println!("{}", costs);
costs.print_shortest_path((costs.cost_from[0].len() - 1, costs.cost_from.len() - 1));
*costs.cost_from[costs.cost_from.len() - 1][costs.cost_from[0].len() - 1]
.values()
.min()
.unwrap()
}
#[cfg(test)]
mod tests {
use crate::*;
use std::io::Cursor;
use test_case::test_case;
const EXAMPLE: &str = &"2413432311323
3215453535623
3255245654254
3446585845452
4546657867536
1438598798454
4457876987766
3637877979653
4654967986887
4564679986453
1224686865563
2546548887735
4322674655533";
const EXAMPLE2: &str = &"111111111111
999999999991
999999999991
999999999991
999999999991";
#[test]
fn problem1_example() {
let c = Cursor::new(EXAMPLE);
assert_eq!(problem1(c.lines()), 102);
}
#[test_case(EXAMPLE, 94)]
#[test_case(EXAMPLE2, 71)]
fn problem2_example(example: &str, expect: u64) {
let c = Cursor::new(example);
assert_eq!(problem2(c.lines()), expect);
}
}