aoc2023/19/src/main.rs

425 lines
13 KiB
Rust

use std::collections::HashMap;
use std::fs::File;
use std::io::{BufRead, BufReader, Lines};
use std::ops::Range;
use std::time::Instant;
// BOILERPLATE
type InputIter = Lines<BufReader<File>>;
fn get_input() -> InputIter {
let f = File::open("input").unwrap();
let br = BufReader::new(f);
br.lines()
}
fn main() {
let start = Instant::now();
let ans1 = problem1(get_input());
let duration = start.elapsed();
println!("Problem 1 solution: {} [{}s]", ans1, duration.as_secs_f64());
let start = Instant::now();
let ans2 = problem2(get_input());
let duration = start.elapsed();
println!("Problem 2 solution: {} [{}s]", ans2, duration.as_secs_f64());
}
// DATA
const INPUT_RANGE: Range<u64> = 1..4001;
fn empty_counters() -> HashMap<char, Vec<Range<u64>>> {
HashMap::from([
('x', vec![INPUT_RANGE]),
('m', vec![INPUT_RANGE]),
('a', vec![INPUT_RANGE]),
('s', vec![INPUT_RANGE]),
])
}
#[derive(Debug)]
struct RulePredicate {
op: PredicateOperator,
var: char,
}
#[derive(Debug, Clone)]
enum RuleAction {
Terminate(bool),
Jump(String),
}
impl From<&str> for RuleAction {
fn from(s: &str) -> Self {
match s {
"A" => Self::Terminate(true),
"R" => Self::Terminate(false),
s => Self::Jump(s.into()),
}
}
}
#[derive(Debug)]
struct Rule {
pred: RulePredicate,
action: RuleAction,
}
#[derive(Debug)]
enum PredicateOperator {
Always,
Lt(u64),
Gt(u64),
}
fn range_overlap<T: num::Num + Ord + Copy>(r1: &Range<T>, r2: &Range<T>) -> Option<Range<T>> {
let new_start = std::cmp::max(r1.start, r2.start);
let new_end = std::cmp::min(r1.end - T::one(), r2.end - T::one());
if new_start <= std::cmp::min(r1.end - T::one(), r2.end - T::one()) && new_end >= std::cmp::max(r1.start, r2.start)
{
Some(new_start..new_end + T::one())
} else {
None
}
}
fn range_exclude<T: num::Num + Ord + Copy>(keep: &Range<T>, exclude: &Range<T>) -> Vec<Range<T>> {
let mut residual = Vec::new();
if let Some(overlap) = range_overlap(keep, exclude) {
if keep.start < overlap.start {
residual.push(keep.start..overlap.start);
}
if keep.end > overlap.end {
residual.push(overlap.end..keep.end);
}
} else {
residual.push(keep.clone());
}
residual
}
impl From<&str> for PredicateOperator {
fn from(s: &str) -> Self {
let (op_s, val_s) = s.split_at(1);
match op_s {
"<" => PredicateOperator::Lt(val_s.parse().unwrap()),
">" => PredicateOperator::Gt(val_s.parse().unwrap()),
s => panic!("unknown operator {}", s),
}
}
}
impl From<&str> for RulePredicate {
fn from(s: &str) -> Self {
let (var_s, pred_s) = s.split_at(1);
Self {
op: pred_s.into(),
var: var_s.chars().next().unwrap(),
}
}
}
impl RulePredicate {
fn check(&self, part: &Part) -> bool {
match self.op {
PredicateOperator::Always => true,
PredicateOperator::Gt(val) => part.0[&self.var] > val,
PredicateOperator::Lt(val) => part.0[&self.var] < val,
}
}
fn matching_range(&self) -> Range<u64> {
let res = match self.op {
PredicateOperator::Always => INPUT_RANGE,
PredicateOperator::Gt(val) => val + 1..INPUT_RANGE.end,
PredicateOperator::Lt(val) => INPUT_RANGE.start..val,
};
println!(" matching range for predicate {:?}: {:?}", self, res);
res
}
}
impl From<&str> for Rule {
fn from(s: &str) -> Self {
if let Some((predicate_s, action_s)) = s.split_once(':') {
Self {
pred: predicate_s.into(),
action: action_s.into(),
}
} else {
Self {
pred: RulePredicate {
op: PredicateOperator::Always,
var: '\0',
},
action: s.into(),
}
}
}
}
fn count_states(ranges: HashMap<char, Vec<Range<u64>>>) -> u64 {
['x', 'm', 'a', 's'].iter().map(|c| ranges[c].iter().map(|r| r.end - r.start).sum::<u64>()).product()
}
impl Rule {
// Returns (matching_ranges, unmatching_ranges for next rule)
fn possible_ranges(
&self,
wfs: &Workflows,
ranges: HashMap<char, Vec<Range<u64>>>,
) -> (u64, HashMap<char, Vec<Range<u64>>>) {
return match &self.action {
RuleAction::Terminate(true) => {
if let PredicateOperator::Always = self.pred.op {
// Always predicate is terminating and returns empty ranges
(count_states(ranges), empty_counters())
} else {
// other predicates will pop up the stack and return unmatched ranges
let (mut matching, mut unmatching) = (ranges.clone(), ranges.clone());
if let Some(relevant_ranges) = ranges.get(&(self.pred.var)){
println!(" relevant: {:?}", relevant_ranges);
matching.insert(
self.pred.var,
relevant_ranges
.iter()
.filter_map(|range| range_overlap(range, &self.pred.matching_range()))
.collect(),
);
unmatching.insert(
self.pred.var,
relevant_ranges.iter().flat_map(|range| range_exclude(range, &self.pred.matching_range())).collect());
println!(" matching: {:?}", matching);
(count_states(matching), unmatching)
} else {
// relevant_ranges is empty so this is a failed state with no possibilities for one of the values
// probably we should never get here
(0, empty_counters())
}
}
}
RuleAction::Terminate(false) => {
if let PredicateOperator::Always = self.pred.op {
// Always predicate is terminating, with false returns 0 count and empty ranges
(0, empty_counters())
} else {
let (mut matching, mut unmatching) = (ranges.clone(), ranges.clone());
if let Some(relevant_ranges) = ranges.get(&(self.pred.var)){
matching.insert(
self.pred.var,
relevant_ranges
.iter()
.filter_map(|range| range_overlap(range, &self.pred.matching_range()))
.collect(),
);
unmatching.insert(
self.pred.var,
relevant_ranges.iter().flat_map(|range| range_exclude(range, &self.pred.matching_range())).collect());
(0, unmatching)
} else {
// relevant_ranges is empty so this is a failed state with no possibilities for one of the values
// probably we should never get here
(0, empty_counters())
}
}
}
RuleAction::Jump(wf) => {
if let PredicateOperator::Always = self.pred.op {
// always predicate before a jump will always jump, so has no unmatching ranges
(wfs.0[wf].possible_ranges(wfs, ranges), empty_counters())
} else {
let (mut matching, mut unmatching) = (ranges.clone(), ranges.clone());
if let Some(relevant_ranges) = ranges.get(&(self.pred.var)){
matching.insert(
self.pred.var,
relevant_ranges
.iter()
.filter_map(|range| range_overlap(range, &self.pred.matching_range()))
.collect(),
);
unmatching.insert(
self.pred.var,
relevant_ranges.iter().flat_map(|range| range_exclude(range, &self.pred.matching_range())).collect());
(wfs.0[wf].possible_ranges(wfs, matching), unmatching)
} else {
// no relevant ranges = no possible continuations
(0, empty_counters())
}
}
}
};
}
}
#[derive(Debug)]
struct Workflow {
name: String,
rules: Vec<Rule>,
}
impl From<&str> for Workflow {
fn from(s: &str) -> Self {
let (name_s, rest_s) = s.split_once('{').unwrap();
let rules = rest_s.split_once('}').unwrap().0.split(',').map(|r| r.into()).collect();
Self {
name: name_s.into(),
rules,
}
}
}
impl Workflow {
fn execute(&self, part: &Part) -> RuleAction {
for r in &self.rules {
if r.pred.check(part) {
return r.action.clone();
}
}
panic!("unhandled part {:?}", part);
}
fn possible_ranges(
&self,
wfs: &Workflows,
mut ranges: HashMap<char, Vec<Range<u64>>>,
) -> u64 {
let mut accum = 0u64;
println!("Entering {} with ranges {:?}", self.name, ranges);
for r in &self.rules {
println!(" evaluating rule: {:?} with {:?}", r, ranges);
let (count, next_ranges) = r.possible_ranges(wfs, ranges);
ranges = next_ranges;
println!(" result of {:?}: count<{}> remaining<{:?}>", r, count, ranges);
accum += count
}
println!("Count of {}: {}", self.name, accum);
accum
}
}
impl Workflows {
fn execute(&self, part: &Part) -> bool {
let mut action = RuleAction::Jump("in".into());
loop {
match &action {
RuleAction::Terminate(b) => return *b,
RuleAction::Jump(j) => {
let next_workflow = &self.0[j];
action = next_workflow.execute(part)
}
}
}
}
fn count_possible_states(&self) -> u64 {
let ranges = HashMap::from([
('x', vec![INPUT_RANGE]),
('m', vec![INPUT_RANGE]),
('a', vec![INPUT_RANGE]),
('s', vec![INPUT_RANGE]),
]);
let possible_ranges = self.0["in".into()].possible_ranges(self, ranges);
println!("possible_ranges: {:?}", possible_ranges);
possible_ranges
}
}
#[derive(Debug)]
struct Workflows(HashMap<String, Workflow>);
#[derive(Debug)]
struct Part(HashMap<char, u64>);
impl From<&str> for Part {
fn from(s: &str) -> Self {
let (_, vars_s) = s.split_once('{').unwrap();
let vars = vars_s.split_once('}').unwrap().0.split(',');
let mut part = HashMap::new();
for var in vars {
let (name, val) = var.split_once('=').unwrap();
part.insert(name.chars().next().unwrap(), val.parse().unwrap());
}
Self(part)
}
}
type Parts = Vec<Part>;
// PROBLEM 1 solution
fn problem1<T: BufRead>(mut input: Lines<T>) -> u64 {
let mut wfs = Workflows(HashMap::new());
let mut parts: Parts = Vec::new();
while let Some(Ok(line)) = input.next() {
if line != "" {
let wf: Workflow = line.as_str().into();
wfs.0.insert(wf.name.clone(), wf);
} else {
break;
}
}
while let Some(Ok(line)) = input.next() {
parts.push(line.as_str().into());
}
parts
.iter()
.filter(|part| wfs.execute(part))
.map(|part| part.0.values().sum::<u64>())
.sum::<u64>()
}
// PROBLEM 2 solution
fn problem2<T: BufRead>(mut input: Lines<T>) -> u64 {
let mut wfs = Workflows(HashMap::new());
let mut parts: Parts = Vec::new();
while let Some(Ok(line)) = input.next() {
if line != "" {
let wf: Workflow = line.as_str().into();
wfs.0.insert(wf.name.clone(), wf);
} else {
break;
}
}
while let Some(Ok(line)) = input.next() {
parts.push(line.as_str().into());
}
wfs.count_possible_states()
}
#[cfg(test)]
mod tests {
use crate::*;
use std::io::Cursor;
const EXAMPLE: &str = &"px{a<2006:qkq,m>2090:A,rfg}
pv{a>1716:R,A}
lnx{m>1548:A,A}
rfg{s<537:gd,x>2440:R,A}
qs{s>3448:A,lnx}
qkq{x<1416:A,crn}
crn{x>2662:A,R}
in{s<1351:px,qqz}
qqz{s>2770:qs,m<1801:hdj,R}
gd{a>3333:R,R}
hdj{m>838:A,pv}
{x=787,m=2655,a=1222,s=2876}
{x=1679,m=44,a=2067,s=496}
{x=2036,m=264,a=79,s=2244}
{x=2461,m=1339,a=466,s=291}
{x=2127,m=1623,a=2188,s=1013}";
#[test]
fn problem1_example() {
let c = Cursor::new(EXAMPLE);
assert_eq!(problem1(c.lines()), 19114);
}
#[test]
fn problem2_example() {
let c = Cursor::new(EXAMPLE);
assert_eq!(problem2(c.lines()), 167409079868000);
}
}