use std::{ fmt::{Debug, Display, Formatter, Write}, io::{BufRead, Cursor}, iter::repeat, mem::swap, ops::{Add, AddAssign, Sub}, str::FromStr, }; #[derive(Copy, Clone, Debug, Eq, PartialEq, Ord, PartialOrd, Hash)] pub struct Coord2d { pub x: i64, pub y: i64, } pub trait AsCoord2d { fn to_coord(self) -> Coord2d; fn x(&self) -> i64; fn y(&self) -> i64; } impl Sub for &Coord2d { type Output = Coord2d; fn sub(self, rhs: T) -> Self::Output { Coord2d { x: self.x() - rhs.x(), y: self.y() - rhs.y(), } } } impl Add for &Coord2d { type Output = Coord2d; fn add(self, rhs: T) -> Self::Output { Coord2d { x: self.x() + rhs.x(), y: self.y() + rhs.y(), } } } impl AsCoord2d for Coord2d { fn to_coord(self) -> Coord2d { self } fn x(&self) -> i64 { self.x } fn y(&self) -> i64 { self.y } } impl AsCoord2d for &Coord2d { fn to_coord(self) -> Coord2d { self.to_owned() } fn x(&self) -> i64 { self.x } fn y(&self) -> i64 { self.y } } impl AsCoord2d for (i32, i32) { fn to_coord(self) -> Coord2d { Coord2d { x: self.0.into(), y: self.1.into(), } } fn x(&self) -> i64 { self.0.into() } fn y(&self) -> i64 { self.1.into() } } impl AsCoord2d for (i64, i64) { fn to_coord(self) -> Coord2d { Coord2d { x: self.0, y: self.1 } } fn x(&self) -> i64 { self.0 } fn y(&self) -> i64 { self.1 } } impl AsCoord2d for (usize, usize) { fn to_coord(self) -> Coord2d { Coord2d { x: self.0 as i64, y: self.1 as i64, } } fn x(&self) -> i64 { self.0 as i64 } fn y(&self) -> i64 { self.1 as i64 } } impl AsCoord2d for (u64, u64) { fn to_coord(self) -> Coord2d { Coord2d { x: self.0 as i64, y: self.1 as i64, } } fn x(&self) -> i64 { self.0 as i64 } fn y(&self) -> i64 { self.1 as i64 } } #[derive(Clone, Eq, PartialEq)] pub struct Grid { pub data: Vec, width: i64, } impl Grid { pub fn new(width: i64) -> Self { Self { data: Vec::new(), width, } } /// Returns a new [Grid] with the same shape (width x height) as `self`, filled with `fill` pub fn same_shape(&self, fill: NT) -> Grid { Grid { data: Vec::from_iter(repeat(fill).take(self.width() * self.height())), width: self.width, } } pub fn with_shape(width: usize, height: usize, fill: T) -> Self { Self { data: Vec::from_iter(repeat(fill).take(width * height)), width: width as i64, } } pub fn width(&self) -> usize { self.width as usize } pub fn height(&self) -> usize { self.data.len() / self.width() } pub fn pos(&self, c: &C) -> i64 { c.y() * self.width + c.x() } pub fn coord(&self, pos: i64) -> Option<(i64, i64)> { if pos < 0 || pos >= self.data.len() as i64 { None } else { Some((pos % self.width, pos / self.width)) } } fn valid_pos(&self, c: &C) -> Option { if c.x() < 0 || c.x() >= self.width { return None; } if c.y() < 0 || c.y() >= self.data.len() as i64 / self.width { return None; } let pos = self.pos(c); if pos < 0 || pos as usize >= self.data.len() { return None; } self.pos(c).try_into().ok() } pub fn get(&self, c: &C) -> Option<&T> { match self.valid_pos(c) { Some(pos) => Some(&self.data[pos]), None => None, } } pub fn get_mut(&mut self, c: &C) -> Option<&mut T> { match self.valid_pos(c) { Some(pos) => Some(self.data.get_mut(pos).unwrap()), None => None, } } pub fn set(&mut self, c: &C, mut val: T) -> Option { match self.valid_pos(c) { Some(pos) => { swap(&mut self.data[pos], &mut val); Some(val) } None => None, } } pub fn increment<'a, A, C: AsCoord2d>(&'a mut self, c: &C, i: A) -> Option<&'a T> where T: AddAssign, { match self.valid_pos(c) { Some(pos) => { self.data[pos] += i; Some(&self.data[pos]) } None => None, } } pub fn row(&self, y: i64) -> Option<&[T]> { if y < self.height() as i64 && y >= 0 { Some(&self.data[self.pos(&(0, y)) as usize..self.pos(&(self.width, y)) as usize]) } else { None } } pub fn col(&self, x: i64) -> Option> { if x < self.width() as i64 && x >= 0 { Some((0..self.height()).map(|y| self.get(&(x, y as i64)).unwrap()).collect()) } else { None } } pub fn find(&self, haystack: &T) -> Option<(i64, i64)> { self.coord( self.data .iter() .enumerate() .find_map(|(pos, val)| if val == haystack { Some(pos as i64) } else { None }) .unwrap_or(-1), ) } pub fn count(&self, haystack: &T) -> usize { self.data.iter().filter(|item| *item == haystack).count() } pub fn forward_slice(&self, start: &C, len: i64) -> Option<&[T]> { let pos = (self.valid_pos(start), self.valid_pos(&(start.x() + len - 1, start.y()))); match pos { (Some(pos1), Some(pos2)) => Some(&self.data[pos1..pos2 + 1]), _ => None, } } pub fn swap(&mut self, a: A, b: B) { match (self.valid_pos(&a), self.valid_pos(&b)) { (Some(a), Some(b)) => self.data.swap(a, b), _ => {} } } // fn window_compare_impl(&self, needle: &[T]) -> Vec<(i64, i64)> { // if (self.width as usize) < needle.len() { // return Vec::new(); // } // let mut res = Vec::new(); // for y in 0..self.height() as i64 { // let mut windows_tmp = self.row(y).unwrap().windows(needle.len()); // let windows = if REV { // windows_tmp.rev() // } else { // windows_tmp // }; // res.extend( // windows // .enumerate() // .filter_map(|(x, w)| if w == needle { Some((x as i64, y)) } else { None }), // ); // } // res // } } impl From for Grid { fn from(input: T) -> Grid { let mut data = Vec::new(); let mut width = 0; for line in input.split(b'\n').map(|i| i.unwrap()) { if width == 0 { width = line.len() as i64 } else if line.len() as i64 != width { panic!("Grids must have fixed length rows") } data.extend_from_slice(&line); } Grid { data, width } } } // Should be Grid? impl FromStr for Grid { type Err = Box; fn from_str(s: &str) -> Result { Ok(Cursor::new(s).into()) } } // impl> Display for Grid { // fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { // for y in 0..self.height() { // for x in 0..self.width() { // f.write_fmt(format_args!("{}",self.get(x as i64, y as i64).unwrap() as char))?; // } // f.write_char('\n')?; // } // f.write_char('\n') // } // } impl Display for Grid { fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result { for y in 0..self.height() { for x in 0..self.width() { f.write_fmt(format_args!("{}", *self.get(&(x as i64, y as i64)).unwrap() as char))?; } f.write_char('\n')?; } f.write_char('\n') } } #[cfg(test)] mod tests { use super::*; static TEST_VECTOR: &[u8] = b"ABCD EFGH IJKL FBCG"; static TEST_VECTOR_S: &str = "ABCD EFGH IJKL FBCG"; fn unchecked_load() -> Grid { Grid::from(TEST_VECTOR) } #[test] fn from_string() { let grid = unchecked_load(); assert_eq!(grid.data, "ABCDEFGHIJKLFBCG".as_bytes()); assert_eq!( TEST_VECTOR_S.parse::>().unwrap().data, "ABCDEFGHIJKLFBCG".as_bytes() ); } #[test] fn indexing() { let grid = unchecked_load(); assert_eq!(grid.get(&(0, 0)), Some(b'A').as_ref()); assert_eq!(grid.get(&(3, 3)), Some(b'G').as_ref()); assert_eq!(grid.get(&(-1, 0)), None); assert_eq!(grid.get(&(0, -1)), None); assert_eq!(grid.get(&(5, 0)), None); assert_eq!(grid.get(&(0, 5)), None); } #[test] fn forward_slice() { let grid = unchecked_load(); assert_eq!(grid.forward_slice(&(0, 0), 2), Some(b"AB".as_slice())); assert_eq!(grid.forward_slice(&(2, 0), 2), Some(b"CD".as_slice())); assert_eq!(grid.forward_slice(&(2, 0), 3), None); assert_eq!(grid.forward_slice(&(0, 2), 4), Some(b"IJKL".as_slice())); } // #[test] // fn window_compare() { // let grid = unchecked_load(); // assert_eq!(grid.window_compare(b"IJKL"), &[(0, 2)]); // assert_eq!(grid.window_compare(b"BC"), &[(1, 0), (1, 3)]); // assert_eq!(grid.window_compare(b"LF").len(), 0); // } }