aoc2024/src/day16.rs

295 lines
8.1 KiB
Rust

use aoc_runner_derive::aoc;
use grid::{Coord2d, Grid};
use std::{
cmp::Ordering,
collections::{BinaryHeap, HashMap},
str::FromStr,
};
type CoordType = i16;
type Coord = (CoordType, CoordType);
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
enum FacingDirection {
East,
South,
West,
North,
}
impl FacingDirection {
fn ofs(&self) -> (CoordType, CoordType) {
match self {
FacingDirection::East => (1, 0),
FacingDirection::South => (0, 1),
FacingDirection::West => (-1, 0),
FacingDirection::North => (0, -1),
}
}
fn reachable(&self) -> &[FacingDirection; 3] {
// Can move perpendicularly or the same direction, backwards would always increase path cost
match self {
FacingDirection::East => &[FacingDirection::East, FacingDirection::North, FacingDirection::South],
FacingDirection::West => &[FacingDirection::West, FacingDirection::North, FacingDirection::South],
FacingDirection::South => &[FacingDirection::South, FacingDirection::East, FacingDirection::West],
FacingDirection::North => &[FacingDirection::North, FacingDirection::East, FacingDirection::West],
}
}
}
#[derive(Clone, Eq, PartialEq, Debug)]
struct State {
cost: usize,
position: Coord,
facing: FacingDirection,
}
impl Ord for State {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
other
.cost
.cmp(&self.cost)
.then_with(|| self.position.cmp(&other.position))
.then_with(|| self.facing.cmp(&other.facing))
}
}
impl PartialOrd for State {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
#[derive(Clone, Eq, PartialEq, Debug)]
struct PathState {
state: State,
path: Vec<Coord>,
}
impl Ord for PathState {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.state.cmp(&other.state)
}
}
impl PartialOrd for PathState {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
struct Maze {
map: Grid<u8>,
}
impl FromStr for Maze {
type Err = Box<dyn std::error::Error>;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let map: Grid<u8> = s.parse()?;
Ok(Self { map })
}
}
impl Maze {
fn valid_moves<'a>(&'a self, state: &'a State) -> impl Iterator<Item = State> + use<'a> {
let reachable = state.facing.reachable();
reachable
.iter()
.map(|dir| (dir, (state.position.0 + dir.ofs().0, state.position.1 + dir.ofs().1)))
.filter(|(_, pos)| self.map.get(pos).is_some_and(|c| *c != b'#'))
.map(|(dir, pos)| State {
facing: *dir,
position: pos,
cost: if *dir == state.facing {
state.cost + 1
} else {
state.cost + 1001
},
})
}
fn dijkstra(&self) -> usize {
let Coord2d {x: start_x, y: start_y} = self.map.find(&b'S').expect("can't find start");
let start = (start_x as CoordType, start_y as CoordType);
let Coord2d {x: finish_x, y: finish_y} = self.map.find(&b'E').expect("can't find finish");
let finish = (finish_x as CoordType, finish_y as CoordType);
let mut distances = HashMap::new();
let mut queue = BinaryHeap::new();
distances.insert((start, FacingDirection::East), 0);
queue.push(State {
cost: 0,
position: start,
facing: FacingDirection::East,
});
while let Some(state) = queue.pop() {
if state.position == finish {
return state.cost;
}
if distances
.get(&(state.position, state.facing))
.is_some_and(|v| state.cost > *v)
{
continue;
}
for new_state in self.valid_moves(&state) {
if distances
.get(&(new_state.position, new_state.facing))
.is_none_or(|best_cost| new_state.cost < *best_cost)
{
distances.insert((new_state.position, new_state.facing), new_state.cost);
queue.push(new_state);
}
}
}
usize::MAX
}
fn path_dijkstra(&mut self) -> (usize, Vec<Vec<Coord>>) {
let Coord2d {x: start_x, y: start_y} = self.map.find(&b'S').expect("can't find start");
let start = (start_x as CoordType, start_y as CoordType);
let Coord2d {x: finish_x, y: finish_y} = self.map.find(&b'E').expect("can't find finish");
let finish = (finish_x as CoordType, finish_y as CoordType);
let mut distances = HashMap::new();
let mut queue = BinaryHeap::with_capacity(self.map.data.len());
let mut best_paths = Vec::new();
let mut best_cost = usize::MAX;
distances.insert((start, FacingDirection::East), 0);
queue.push(PathState {
state: State {
cost: 0,
position: start,
facing: FacingDirection::East,
},
path: Vec::new(),
});
while let Some(PathState { state, mut path }) = queue.pop() {
if distances
.get(&(state.position, state.facing))
.is_some_and(|v| state.cost > *v)
{
continue;
}
if state.position == finish {
match state.cost.cmp(&best_cost) {
Ordering::Less => {
path.push(state.position);
best_paths.clear();
best_paths.push(path);
best_cost = state.cost
}
Ordering::Equal => {
path.push(state.position);
best_paths.push(path);
}
_ => {}
}
continue;
}
for new_state in self.valid_moves(&state) {
if distances
.get(&(new_state.position, new_state.facing))
.is_none_or(|best_cost| new_state.cost <= *best_cost)
{
let mut new_path = path.clone();
new_path.push(state.position);
distances.insert((new_state.position, new_state.facing), new_state.cost);
queue.push(PathState {
state: new_state,
path: new_path,
});
}
}
}
(best_cost, best_paths)
}
}
fn parse(input: &str) -> Maze {
input.parse().unwrap()
}
#[aoc(day16, part1)]
pub fn part1(input: &str) -> usize {
let maze = parse(input);
maze.dijkstra()
}
#[aoc(day16, part2)]
pub fn part2(input: &str) -> usize {
let mut maze = parse(input);
let best_paths = maze.path_dijkstra();
let mut path_map = maze.map.same_shape(false);
for tile in best_paths.1.iter().flatten() {
path_map.set(tile, true);
}
path_map.count(&true)
}
#[cfg(test)]
mod tests {
use super::*;
const EXAMPLE1: &str = "###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############";
const EXAMPLE2: &str = "#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################";
#[test]
fn part1_example1() {
assert_eq!(part1(EXAMPLE1), 7036);
}
#[test]
fn part1_example2() {
assert_eq!(part1(EXAMPLE2), 11048);
}
#[test]
fn part2_example1() {
assert_eq!(part2(EXAMPLE1), 45);
}
#[test]
fn part2_example2() {
assert_eq!(part2(EXAMPLE2), 64);
}
}