aoc2024/src/day16.rs
Keenan Tims 755fbbc53d
day16: refactor, optimize
split path recording and best cost functions for big gainz

use i32 instead of i64 positions to shrink data structures for some
gainz
2024-12-16 00:58:15 -08:00

297 lines
8.1 KiB
Rust

use aoc_runner_derive::aoc;
use grid::{AsCoord2d, Coord2d, Grid};
use std::{
collections::{BinaryHeap, HashMap},
str::FromStr,
usize,
};
#[derive(Copy, Clone, Eq, PartialEq, Hash, Debug, Ord, PartialOrd)]
enum FacingDirection {
East,
South,
West,
North,
}
impl FacingDirection {
fn ofs(&self) -> (i32, i32) {
match self {
FacingDirection::East => (1, 0),
FacingDirection::South => (0, 1),
FacingDirection::West => (-1, 0),
FacingDirection::North => (0, -1),
}
}
fn reachable(&self) -> [FacingDirection; 3] {
// Can move perpendicularly or the same direction, backwards would always increase path cost
match self {
FacingDirection::East | FacingDirection::West => [*self, FacingDirection::North, FacingDirection::South],
FacingDirection::South | FacingDirection::North => [*self, FacingDirection::East, FacingDirection::West],
}
}
}
#[derive(Clone, Eq, PartialEq, Debug)]
struct State {
cost: usize,
position: (i32, i32),
facing: FacingDirection,
}
impl Ord for State {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
other
.cost
.cmp(&self.cost)
.then_with(|| self.position.cmp(&other.position))
.then_with(|| self.facing.cmp(&other.facing))
}
}
impl PartialOrd for State {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
Some(self.cmp(other))
}
}
#[derive(Clone, Eq, PartialEq, Debug)]
struct PathState {
state: State,
path: Vec<(i32, i32)>,
}
impl Ord for PathState {
fn cmp(&self, other: &Self) -> std::cmp::Ordering {
self.state.cmp(&other.state)
}
}
impl PartialOrd for PathState {
fn partial_cmp(&self, other: &Self) -> Option<std::cmp::Ordering> {
self.state.partial_cmp(&other.state)
}
}
struct Maze {
map: Grid<u8>,
}
impl FromStr for Maze {
type Err = Box<dyn std::error::Error>;
fn from_str(s: &str) -> Result<Self, Self::Err> {
let map: Grid<u8> = s.parse()?;
Ok(Self { map })
}
}
impl Maze {
fn dijkstra(&self) -> usize {
let (start_x, start_y) = self.map.find(&b'S').expect("can't find start");
let start = (start_x as i32, start_y as i32);
let (finish_x, finish_y) = self.map.find(&b'E').expect("can't find finish");
let finish = (finish_x as i32, finish_y as i32);
let mut distances = HashMap::new();
let mut queue = BinaryHeap::new();
distances.insert((start, FacingDirection::East), 0);
queue.push(State {
cost: 0,
position: start,
facing: FacingDirection::East,
});
while let Some(State { cost, position, facing }) = queue.pop() {
if position == finish {
return cost;
}
if distances.get(&(position, facing)).is_some_and(|v| cost > *v) {
continue;
}
for (new_dir, new_position, new_cost) in facing
.reachable()
.iter()
.map(|dir| (dir, (position.0 + dir.ofs().0, position.1 + dir.ofs().1)))
.filter(|(_, pos)| self.map.get(pos).is_some_and(|c| *c != b'#'))
.map(|(dir, pos)| (dir, pos, if *dir == facing { cost + 1 } else { cost + 1001 }))
{
if distances
.get(&(new_position, *new_dir))
.is_none_or(|best_cost| new_cost < *best_cost)
{
queue.push(State {
cost: new_cost,
position: new_position,
facing: *new_dir,
});
distances.insert((new_position, *new_dir), new_cost);
}
}
}
usize::MAX
}
fn path_dijkstra(&mut self) -> (usize, Vec<Vec<(i32, i32)>>) {
let (start_x, start_y) = self.map.find(&b'S').expect("can't find start");
let start = (start_x.try_into().unwrap(), start_y.try_into().unwrap());
let (finish_x, finish_y) = self.map.find(&b'E').expect("can't find finish");
let finish = (finish_x.try_into().unwrap(), finish_y.try_into().unwrap());
let mut distances = HashMap::new();
let mut queue = BinaryHeap::with_capacity(self.map.data.len());
let mut best_paths = Vec::new();
let mut best_cost = usize::MAX;
distances.insert((start, FacingDirection::East), 0);
queue.push(PathState {
state: State {
cost: 0,
position: start,
facing: FacingDirection::East,
},
path: Vec::with_capacity(100),
});
while let Some(PathState { state, path }) = queue.pop() {
let mut new_path = path.clone();
new_path.push(state.position);
if state.position == finish {
if state.cost < best_cost {
best_paths.clear();
best_paths.push(new_path);
best_cost = state.cost
} else if state.cost == best_cost {
best_paths.push(new_path);
}
continue;
}
if distances
.get(&(state.position, state.facing))
.is_some_and(|v| state.cost > *v)
{
continue;
}
for (new_dir, new_position, new_cost) in state
.facing
.reachable()
.iter()
.map(|dir| (dir, (state.position.0 + dir.ofs().0, state.position.1 + dir.ofs().1)))
.filter(|(_, pos)| self.map.get(pos).is_some_and(|c| *c != b'#'))
.map(|(dir, pos)| {
(
dir,
pos,
if *dir == state.facing {
state.cost + 1
} else {
state.cost + 1001
},
)
})
{
if distances
.get(&(new_position, *new_dir))
.is_none_or(|best_cost| new_cost <= *best_cost)
{
queue.push(PathState {
state: State {
cost: new_cost,
position: new_position,
facing: *new_dir,
},
path: new_path.clone(),
});
distances.insert((new_position, *new_dir), new_cost);
}
}
}
return (best_cost, best_paths);
}
}
fn parse(input: &str) -> Maze {
input.parse().unwrap()
}
#[aoc(day16, part1)]
pub fn part1(input: &str) -> usize {
let maze = parse(input);
maze.dijkstra()
}
#[aoc(day16, part2)]
pub fn part2(input: &str) -> usize {
let mut maze = parse(input);
let best_paths = maze.path_dijkstra();
let mut path_map = maze.map.clone();
for tile in best_paths.1.into_iter().flatten() {
path_map.set(&tile, b'O');
}
path_map.count(&b'O')
}
#[cfg(test)]
mod tests {
use super::*;
const EXAMPLE1: &str = "###############
#.......#....E#
#.#.###.#.###.#
#.....#.#...#.#
#.###.#####.#.#
#.#.#.......#.#
#.#.#####.###.#
#...........#.#
###.#.#####.#.#
#...#.....#.#.#
#.#.#.###.#.#.#
#.....#...#.#.#
#.###.#.#.#.#.#
#S..#.....#...#
###############";
const EXAMPLE2: &str = "#################
#...#...#...#..E#
#.#.#.#.#.#.#.#.#
#.#.#.#...#...#.#
#.#.#.#.###.#.#.#
#...#.#.#.....#.#
#.#.#.#.#.#####.#
#.#...#.#.#.....#
#.#.#####.#.###.#
#.#.#.......#...#
#.#.###.#####.###
#.#.#...#.....#.#
#.#.#.#####.###.#
#.#.#.........#.#
#.#.#.#########.#
#S#.............#
#################";
#[test]
fn part1_example1() {
assert_eq!(part1(EXAMPLE1), 7036);
}
#[test]
fn part1_example2() {
assert_eq!(part1(EXAMPLE2), 11048);
}
#[test]
fn part2_example1() {
assert_eq!(part2(EXAMPLE1), 45);
}
#[test]
fn part2_example2() {
assert_eq!(part2(EXAMPLE2), 64);
}
}