use aoc_runner_derive::{aoc, aoc_generator}; use std::collections::{HashMap, HashSet}; type Edges = HashMap>; #[aoc_generator(day11)] fn parse(input: &str) -> Edges { let mut edges: Edges = HashMap::new(); for l in input.lines() { let (k, rest) = l.split_once(": ").unwrap(); for v in rest.split_ascii_whitespace() { edges.entry(k.to_string()).or_default().push(v.to_string()); } } edges } fn find_path(cur: &str, goal: &str, edges: &Edges) -> u64 { if cur == goal { return 1; } if let Some(nexts) = edges.get(cur) { nexts.iter().map(|n| find_path(n, goal, edges)).sum() } else { 0 } } fn mark_paths<'a>( cur: &'a str, edges: &'a Edges, mut reachable: HashSet<&'a str>, ) -> HashSet<&'a str> { reachable.insert(cur); if let Some(nexts) = edges.get(cur) { for n in nexts { if !reachable.contains(&n.as_str()) { reachable = mark_paths(n, edges, reachable); } } } reachable } #[aoc(day11, part1)] fn part1(fwd: &Edges) -> u64 { find_path("you", "out", fwd) } #[aoc(day11, part2)] fn part2(edges: &Edges) -> u64 { let mut rev = Edges::from_iter(edges.keys().map(|k| (k.to_owned(), vec![]))); for (from, tos) in edges { for to in tos { rev.entry(to.to_owned()).or_default().push(from.to_owned()); } } let mut reachable_dac = mark_paths("dac", edges, HashSet::new()); reachable_dac = mark_paths("dac", &rev, reachable_dac); let mut reachable_fft = mark_paths("fft", edges, HashSet::new()); reachable_fft = mark_paths("fft", &rev, reachable_fft); let reachable: HashSet<&str> = reachable_dac .intersection(&reachable_fft) .copied() .collect(); let unreachable: HashSet<&str> = HashSet::from_iter(edges.keys().map(|k| k.as_str())) .difference(&reachable) .copied() .collect(); let mut reachable_edges = edges.clone(); for k in &unreachable { reachable_edges.remove(*k); } for (_k, v) in reachable_edges.iter_mut() { for ur in &unreachable { if let Some(idx) = v.iter().position(|s| s == ur) { v.remove(idx); } } } // This is a bit of a cheat from viewing the graph and realizing all paths are ordered this way. // However, knowing that fact that we can partition in this way, we could use a shortest-path algo // to determine which order fft and dac are in. // // The assumption holds on my data and the example, so I think it's probably true of all inputs. find_path("svr", "fft", &reachable_edges) * find_path("fft", "dac", &reachable_edges) * find_path("dac", "out", &reachable_edges) } #[cfg(test)] mod tests { use rstest::rstest; use super::*; const EXAMPLE: &str = "aaa: you hhh you: bbb ccc bbb: ddd eee ccc: ddd eee fff ddd: ggg eee: out fff: out ggg: out hhh: ccc fff iii iii: out"; const EXAMPLE2: &str = "svr: aaa bbb aaa: fft fft: ccc bbb: tty tty: ccc ccc: ddd eee ddd: hub hub: fff eee: dac dac: fff fff: ggg hhh ggg: out hhh: out"; #[rstest] #[case(EXAMPLE, 5)] fn part1_example(#[case] input: &str, #[case] expected: u64) { assert_eq!(part1(&parse(input)), expected); } #[rstest] #[case(EXAMPLE2, 2)] fn part2_example(#[case] input: &str, #[case] expected: u64) { assert_eq!(part2(&parse(input)), expected); } }